Course Descriptions of the Core Courses for B.Sc. in Data Science & Analytics

MAT101– Differential & Integral Calculus

Course Rationale:

Calculus is a transition course to upper-division mathematics and computer science courses. Important objectives of the calculus sequence are to develop and strengthen the students' problem-solving skills and to teach them to read, write, speak, and think in the language of mathematics. In particular, students learn how to apply the tools of calculus to a variety of problem situations.

Course Content:

Differential Calculus: Limit, Continuity and differentiability. Successive differentiation of various types of functions, Leibnitz's theorem, Rolle's theorem, Mean value theorems, Taylor's and Maclaurin's theorems in finite and infinite forms, Lagrange's form of remainders, Cauchy's form of remainders, Expansion of functions, Evaluation of indeterminate forms by L'Hospital rule, Partial differentiation, Euler's theorem, Tangent and normal, Concavity of functions, Determination of maximum and minimum values of functions and points of inflection with Applications, Curvature, Asymptotes.

Integral Calculus: Integration by the method of substitution, Standard integrals, Integration by successive reduction, Definite integrals, its properties and use in summing series, Walli's formulae, Improper integrals, Beta function and Gamma function, Area under a plane curve and area of a region enclosed by two curves in Cartesian and polar co-ordinates, Volumes of solids of revolution, Volume of hollow solids of revolution by shell method, Area of surface of revolution, Jacobians, Multiple integrals with applications

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2		\checkmark							
CLO 3				\checkmark					
CLO 4							\checkmark		

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain	Assessment Tool
		/Level	
CLO 1	Understand the basic concepts and principles of	Understand	Term and Final
	differential and integral calculus of real functions		Examination
	and series.		
CLO 2	understand the geometric meaning of differential	Understand	Term and Final
	and integral calculus.		Examination
CLO 3	apply the concept and principles of differential and	Apply	Term and Final
	integral calculus to solve real-life problems.		Examination
CLO 4	analyze the properties of functions based on graph.	Analyze	Assignment

MAT102– Differential Equations & Special Functions

Course Rationale:

Differential equations and Special functions are essential tool for describing the nature of the physical universe. This course aims to develop necessary skills required by the students for solution of differential equations and Special functions.

Course Content:

Ordinary Differential Equations: Degree and order of ordinary differential equations. Formation of differential equations. Solutions of first order differential equations; Separable & homogeneous equations, Exact equation. Integrating factor. Equations made exact by integrating factors. First order linear equation. Bernoulli's equation. Higher order linear homogeneous equation with constant coefficients. Initial and Boundary value problems. Linear non-homogeneous equation with constant coefficients: Method of undetermined coefficients, Method of variation of parameters, Operator method; Series solution; Frobenius method.

Partial Differential Equations: Formation of PDEs & First order linear PDEs, Solution of PDEs of first order; Lagrange's Method, Second Order homogeneous & non-homogeneous PDEs with constant coefficients, Wave equations, Particular solutions with boundary and initial conditions.

Special Functions: Legendre differential equation and Legendre polynomials, Recurrence relations for Legendre polynomials, Spherical harmonics, Bessel differential equation, Bessel functions, Recurrence relations for Bessel functions, Modified Bessel functions, Hermite differential equation, Hermite polynomials, Hyper-geometric function.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2	\checkmark								
CLO 3		\checkmark							
CLO 4			\checkmark						

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool		
CLO 1	understand of basic concepts of the differential	Understand	Term and Final		
	equations.		Examination		
CLO 2	solve differential equations as well as the	Evaluation	Term and Final		
	systems of such equations.		Examination		
CLO 3	apply the knowledge of the differential	Apply	Term and Final		
	equations to analyze dynamics of the processes.		Examination		
CLO 4	apply computational tools to analyze the	Apply	Assignment/Project		
	solutions.				

MAT291–Linear Algebra

Course Rationale:

This course introduces the student to matrices, vector spaces and vector geometry. The course will emphasize the ways in which geometric and algebraic concepts, reinforce each other, and the ways in which these concepts can be generalized and applied to practical situations.

Course Content:

Introduction to matrix; different types of matrices, Methods for finding inverse of matrix, Concept of generalized inverse, canonical forms of matrices, rank of a matrix; Cofactor expansion, Formation of adjoint matrix; System of Linear Equations: Gaussian elimination and Gauss-Jordan elimination method, Application of Matrices for solving system of linear equationsfor full rank and non-full rank problems, LU- decompositions; General vector space: Subspace, Linear

combination, Linear independence and dependence, Basis and dimension, Row space, column space and null space; Inner Product spaces: Angle and orthogonality in inner product spaces, Orthonormal bases, Gram-Schmidt Process, QR-Decomposition, Best approximation, Least squares, Change of bases; Linear transformations: kernel and image of a linear transformation, rank and nullity, Matrix representation of linear transformations, Isomorphism; Diagonalization of matrices: Eigen values and Eigen vectors, the minimum polynomial of a matrix and the Cayley-Hamilton theorem.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2	\checkmark								
CLO 3									
CLO 4									

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool		
CLO 1	understanding of the concepts of vector space and	Understand	Term and Final		
	subspace, linear independence, span, and basis.		Examination		
CLO 2	apply principles of matrix algebra to linear	Apply	Term and Final		
	transformations.		Examination		
CLO 3	solve systems of linear equations using multiple	Evaluate	Term and Final		
	methods.		Examination		
CLO 4	applications of linear systems in sciences and	Apply	Assignment/Project		
	engineering.				

MAT295– Discrete Mathematics

Course Rationale:

This course introduces discrete objects such as integers, rational numbers, propositions, sets, relations, functions etc. The aims of this course are to learn concepts associated with mentioned topics, their properties, and relationships among them and others.

Course Content:

Logic: Propositional Logic, Applications of Propositional Logic, Proof Methods; Sequences and Summations, Cardinality of Sets, Algorithms; Induction and Recursion, Recursive Algorithms, Counting principles, The Pigeonhole Principle; Recurrence Relations, Inclusion–Exclusion with Applications; Relation and their properties, Closure of Relations, Equivalence Relations; Graphs and Graph Models, Euler and Hamilton Paths, Shortest Path Algorithm, Planar Graph, Graph Coloring; Introduction to Trees, Spanning Tree Problems; Boolean Algebra: Functions and Logic Gates, Minimization of Circuits.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9			
CLO 1	\checkmark											
CLO 2				\checkmark								
CLO 3							\checkmark					

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment		
			Tool		
CLO 1	relate the knowledge and skills obtained to investigate	Understand	Term and Final		

	and solve a variety of discrete mathematical problems		Examination
	and know how to use them in appropriate technology.		
CLO 2	identify and apply fundamental concepts of proof	Apply	Term and Final
	techniques, binary relations, graphs and trees.		Examination
CLO 3	use the mathematical concepts learned to apply in	Apply	Term and Final
	various areas of computer science and engineering.		Examination

MAT397– Numerical Methods and Optimization

Course Rationale:

The numerical optimization methods are necessary for estimating the statistical models. This course will give a solid foundation to make students acquire a systematic understanding of the numerical and optimization methods.

Course Content:

Numerical solution of algebraic equations- Bisection Method, Newton-Raphson Method, etc. Errors in numerical solutions, Interpolation and Polynomial Approximation: Concept of Interpolation and Extrapolation, Interpolation and Lagrange Polynomial, Finite Differences.

Basics of optimization theory; linear programming (simplex method, duality theory); unconstrained methods (optimality conditions, descent algorithms and convergence theorems); constrained minimization (Lagrange multipliers, Karush-Kuhn-Tucker conditions, active set, penalty and interior point methods). Applications in engineering, operations, finance, statistics, etc.Use of R/Python optimization toolbox to obtain practical experience with the materials.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2	\checkmark								
CLO 3	\checkmark								
CLO 4				\checkmark					

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO1	Understand the linear programming problems the	Understand	Assignment, Term and
	simplex method for linear programming		Final Examination
CLO2	Learn nonlinear programming with constraints and	Understand	Term and Final
	no constraints		Examination
CLO3	Understand multi-objective optimization and be	Understand	Assignment, Term and
	able to generate Pareto		Final Examination
CLO4	Be able to model complex systems using surrogate	Apply	Term and Final
	modeling and design space reduction techniques		Examination
CLO5	Be able to apply numerical packages to solve	Apply	Term and Final
	optimization problems		Examination

STA191– Probability & Statistics

Course Rationale:

Probability and statistics allows data scientists to assess the certainty of outcomes of a particular study or experiment. A solid understanding of probability and statistics is crucial for anyone who wants to work with data in data science. Thus, this course will provide the beginners to understand the fundamental probability and statistics concept with simple examples.

Course Content:

Introduction to statistics, Summarizing and presenting data, frequency distribution, formation of discrete and continuous frequency distribution, Measures of central tendency and dispersion; Skewness and Kurtosis; Detection of outliers for univariate data; Correlation for different types of data and simple linear regression; Definition and scope of probability, Set theory, elements of set theory; Probability for simple and compound events; Conditional probability, Additive and Multiplicative rules; Bayes' theorem.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2		\checkmark							
CLO 3			\checkmark						
CLO 4	\checkmark								
CLO5			\checkmark						

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO1	Understand statistical terms and notations,	Understand	Term and Final
	construct frequency tables, plots.		Examination
CLO2	analyze data and interpret the statistical outputs	Analyze	Assignment, Term and
			Final Examination
CLO3	Compute and summarize numerical data with	Apply	Assignment, Term and
	basic statistics.		Final Examination
CLO4	Understand the terms of probability and the	Understand	Term and Final
	probability of simple and compound events		Examination
CLO5	Solving basic probability problems	Apply	Assignment, and Final

STA293– Probability Distributions

Course Rationale:

This course extends the basic probability theory to accommodate different probability distributions. A solid understanding of probability distribution is crucial for data scientist. Thus, this course will provide to understand the probability distribution and their applications in data science.

Course content:

Random variables; basic concept of probability distribution; Commonly used distribution functions; Mathematical expectations; Discrete probability distributions and their characteristics; Continuous probability distributions and their characteristics. Transformations of random variables and their distributions; Sampling distribution concept; Sampling distribution of some common statistics; Central limit theorem; Order statistics.

	•								
CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1			\checkmark						
CLO2	\checkmark								
CLO3									

Mapping of course learning outcomes (CLOs) with the PLOs

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CLOs	CLO description	Domain/Level	Assessment to	ol	
CLO1	Apply appropriate probability distribution to a	Apply	Assignments,	Term	and

	particular problem		final examination		
CLO2	Find distribution of a transformed random	Understand	Assignments, Term and final examination Assignments, final		
	variable		final examination		
CLO3	Find distributions of some common statistics	Remember	Assignments,	final	
			examination		

STA395– Statistical Inference

Course Rationale:

Data scientists often simulate the samples to understand how the population behaves and for that they make assumptions about the underlying probability distributions of the variable. This course will help the data scientist to make propositions about the entire population and that is why this course is very important.

Course content:

Review of the concepts of parameters and statistics; sampling distribution; standard normal, t, F, and chi-square statistics; Point Estimation and properties of good Estimator, Maximum likelihood estimator, Methods of moments estimator, Least squares estimator; Confidence interval for the mean, variance, and proportions, parametric test of hypothesis for large and small samples; Nonparametric tests. The Maximum likelihood estimation, multidimensionality in parameters, Newton–Rapson, Markov chain Monte Carlo (MCMC), Expectation Maximization (EM)algorithm.

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO	PLO7	PLO8	PLO9
						6			
CLO 1	\checkmark								
CLO 2	\checkmark								
CLO 3				\checkmark					

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO 1	Understand the basic ideas and methods about	Understand	Term and Final
	fundamental principles for statistical inference.		Examination
CLO 2	knowledge about construction of point and interval	Understand	Term and Final
	estimators, and hypothesis testing (parametric and		Examination
	non-parametric)		
CLO 3	Perform point and interval estimation, hypothesis	Apply	Term and Final
	testing (parametric and non-parametric) under a		Examination
	large variety of situation.		

CS191–Programming with C

Course Rationale:

C Programming is must to learn for everyone who are interested in programming and want tostart their career in Data Science. It is the basic foundation of any programming languages. All the programming languages like java, or any object oriented programming language are all inherited from C.

Course Content:

Programming with C; Fundamentals in C; Operators and Expressions; Data types; Input-Output Library Functions; Control statements; Function, Storage class;Pointer;Pointer and Function;Array; Pointer and array; Array and function; Dynamic memory allocation; String; String and function; Command line arguments; Preprocessor; Structure; Structure and function; File Handling.

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2		\checkmark							
CLO 3				\checkmark					
CLO 4			\checkmark						
CLO 5									

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO1	Understand the advantages of a high level	Understand	Term and Final
	language like C, the programming process,		Examination
	and the compilation process.		
CLO2	Describe and use software tools in the	Analyze	Assignment, Term and
	programming process.		Final Examination
CLO3	Apply good programming principles to the	Analyze	Term and Final
	design and implementation of C programs.		Examination
CLO4	Design, implement, debug and test programs	Apply	Assignment, Term and
	using the fundamental elements of C.		Final Examination
CLO5	Demonstrate an understanding of primitive	Apply	Term and Final
	data types, values, operators and expressions		Examination
	in C.		

CS295– Programming with Python

Course Rationale:

This is the computing course which will help the students have the basic knowledge of data and statistics needed to go for computation. This programming software Python provides the user a wide scope of data manipulation and analysis of interest.

Course Content:

Downloading and Installing Python- Running Python; Basic Syntax; Interactive mode Programming –Script mode Programming –A simple Python Example-Python Libraries; Data, expressions, statements; Control flow, functions conditionals: Lists, tuples lists; Dictionaries, files dictionaries; Modules and Packages: Built-in modules, User-defined modules, Object oriented programming; overview of NumPy and Pandas package.

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1		\checkmark							
CLO 2		\checkmark							
CLO 3						\checkmark			
CLO 4						\checkmark			

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO1	Designed to engage in the basic knowledge of	Understand	Term and Final
	Python		Examination
CLO2	Intended to learn the concepts of Statements, Tuples,	Analyze	Assignment, Term
	conditionals, iteration, functions, and strings in		and Final
	Python		Examination

CLO3	Engage in gaining the concepts of Lists and Tuples.	Analyze	Term and Final Examination
CLO4	To apply the knowledge regarding dictionaries and files	Apply	Assignment, Term and Final

CS397– Data Structure & Algorithm

Course Rationale:

Data structures and algorithm design methods impacts the performance of programs. Thus, this course will help to choose the appropriate data structure and algorithm design method for a specified application.

Course Content:

An overview of data structure concepts, arrays, stacks, queues, trees, and graphs. Abstract data types and data structures, Classes, and data objects; The complexity of Algorithms: worst case, average case, and amortized complexity; Algorithm analysis; Algorithm design paradigms. Lists: stacks, queues, implementation, garbage collection. Dictionaries: hash tables, binary search trees, AVL trees, red-black trees, splay trees, skip-lists, B-trees; Priority queues; Graphs: Shortest path algorithms, minimal spanning tree algorithms, depth-first, and breadth-first search; Sorting: Advanced sorting methods and their analysis, lower bound on complexity, and order statistics; Algorithm analysis and efficient code design.

Mapping	Course	Learning	Outcomes	(CLOs)	with th	e PLOs
Trupping.	Course.	Loui mig	Outcomes	(CLOS)	WICH CH	

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2		\checkmark							
CLO 3		\checkmark							

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Lev	Assessment Tool
		el	
CLO 1	Good understanding of the basic data structure.	Understand	Term and Final
			Examination
CLO 2	The knowledge to implement abstract data types.	Understand	Assignment, Term,
			and Final Examination
CLO 3	The ability to use an appropriate data structure to	Analyze	Term and Final
	solve a problem.		Examination

CS399–Artificial Intelligence

Course rational:

Artificial intelligence (AI) is a research field that aims to make a computer that can learn, plan, and solve problems autonomously like intelligent human. The main purpose of this course is to provide the most fundamental knowledge to the students so that they can understand what the AI is and be able to understand the possible applications of AI in real systems.

Course content:

An introduction to the basic principles, techniques, and applications of Artificial Intelligence; Coverage includes knowledge representation, logic, inference, problem solving, search algorithms, game theory, perception, learning, planning, and agent design; Programming in AI language tools; Potential areas of further exploration include expert systems, neural networks, fuzzy logic, robotics, natural language processing, and computer vision.

Mapping of course learning outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	\checkmark								
CLO2									
CLO3									
CLO4									

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CLOs	CLO description	Domain/Level	Assessment tool		
CLO1	Demonstrate fundamental understanding of the AI and	Understand	Term and final		
	its foundations.		examination		
CLO2	Apply basic principles of AI in solutions that require	Apply	Assignments, Term		
	problem solving, inference, perception, knowledge		and final		
	representation, and learning.		examination		
CLO3	Demonstrate awareness and a fundamental	Apply	Assignments, Term		
	understanding of various applications of AI techniques		and final		
	in intelligent agents, expert systems, artificial neural		examination		
	networks and other machine learning models.				
CLO4	Demonstrate proficiency in applying scientific method	Analyze	Assignments, Term		
	to models of machine learning.		and final		
			examination		

DSA101– Introduction to Data Science

Course Rationale:

This course will provide the beginners to understand the fundamental concept of data with various examples. From this course, the beginners will understand their role as a data scientist in various filed like economics, psychology, social sciences, business, sports, medicine, biology etc.

Course Content:

Introduction to Data, Stages in a Data Science project, Applications of Data Science in various fields, types of data, text, image, audio, and video data; sources of data; tools and techniques for data managing using computer, big data, Data security Issues and ethics of data; visualizing and making sense of data; Missing data, data cleaning, Data integration and transformation, Data reduction, Data discretization; basic statistics; Devolving questionnaire, Sampling methods for data collection; Demonstrate the ability to clean and prepare data for analysis and assemble data from a variety of sources; Introduction toR/ SPSS/ Excel/ Minitab software to work with basic data computation.

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2		\checkmark							
CLO 3									

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool		
CLO 1	Understanding of the basic data structure.	Understand	Term and Final		
			Examination		
CLO 2	Choose appropriate sampling methods for data	Understand	Assignment, Term, and		
	collections and understanding data ethics.		Final Examination		
CLO 3	Ability to use an appropriate data to solve a	Understand	Term and Final		
	problem.		Examination		

DSA201– Data Processing & Storage

Course Rationale:

The objective of the course is to present an introduction to database management systems, emphasizing how to organize, maintain and retrieve - efficiently and effectively - information from a DBMS.

Course Content:

Database System- concepts and architecture; The Relational Model;ConceptualModelingData Definition Languages and SQL; Relational Algebra and SQL; Database Design and Normalization; Triggers and Active Databases; Physical Data Organization and Indexing;Dynamic Multi-level indexing using B Trees and B+ Trees, Query Processing; Transaction Processing; Design Coding and Testing

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2				\checkmark					
CLO 3									
CLO 4			\checkmark						

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

	CLO Description	Domain/Level	Assessment Tool		
CLO 1	Describe the fundamental elements of relational	Understand	Term and Final		
	database management systems.		Examination		
CLO 2	Explain the basic concepts of the relational data	Understand	Assignment, Term		
	model		Examination		
CLO 3	Design models to represent simple database	Analyze	Term and Final		
	application scenarios		Examination		
CLO 4	Improve the database design.	Analyze	Term and Final		
			Examination		

DSA303- Regression Analysis

Course Rationale:

Real-life events are related to each other make up a system; one or more events influence one or more other events. To understand such a system, and to make prediction or forecasting for those systems linear model is essential. i.e., regression modeling are a great tool.

Course content:

Simple and Multiple linear regression models, estimation, assumptions, residual analysis; Reduced and full models, F test for general linear hypothesis. Dummy variables regression model, Collinearity and influence measures such as Cook's D, CovRatioetc; detection of outliers by residual analysis; Model Selection such as forward selection, backward elimination, and stepwise algorithm, Model selection criterions such as AIC, BIC, DIC, HQIC, Nonlinear regression, Robust regression.

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	\checkmark				\checkmark				
CLO2					\checkmark				
CLO3			\checkmark	\checkmark					
CLO4					\checkmark	\checkmark			

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO1	Build simple, multiple, polynomial and non-	Create	Assignments, Term and
	linear regression models		final examinations
CLO2	Evaluate an estimated regression model's	Evaluate	Assignments, Term and
	performance through rigorous statistical		final examinations
	tests and measures		
CLO3	Diagnose model assumptions through	Analyze	Assignments, Term and
	visualization of residuals and different		final examinations
	statistical measures		
CLO4	Select best models among all possible	Analyze	Assignments, Term and
	regression models through step-by-step		final examinations
	systematic methods.		

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

DSA305–Multivariate Analysis

Course Rationale:

In many observational or designed studies, observations are collected simultaneously on more than one variable on each experimental unit. Multivariate analysis is the collection of methods that can be used to analyze these multiple measurements. Thus, this course introduces the student to various multivariate data analysis tools and dimension reduction techniques for multivariate data.

Course content:

Multivariate data; data display and pictorial representations, multivariate distance; Random vectors and random sampling; The multivariate normal distribution; application of Mahalanobisdistance; The plausibility of mean vector as a value for a normal population mean, Hotelling T^2 and likelihood ratio tests, multivariate confidence intervals; Comparisons of several multivariate means; Principal components analysis; factor analysis; Canonical correlation analysis; Cluster analysis; Discrimination and Classification.

Mapping Course Learning Outcomes (C	CLOs) with the PLOs
-------------------------------------	---------------------

CLOs	PLO	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
	1								
CLO 1	\checkmark								
CLO 2	\checkmark								
CLO 3					\checkmark				
CLO 4									

Mapping	Course	Learning	Outcomes	(CLOs)	with	the	Teaching-Learning	&	Assessment
Strategy									

CLOs	CLO Description	Domain/Level	Assessment
			Tool
CLO 1	Understand the principles and characteristics of the	Understand	Term and Final
	multivariate data analysis, including strengths and		Examination
	weaknesses.		
CLO 2	Select appropriate techniques of multivariate analysis for	Understand	Term and Final
	a multivariate dataset.		Examination
CLO 3	Apply the multivariate methods in the framework of the	Apply	Term and Final
	multivariate analysis.		Examination
CLO 4	use the statistical software to analyze data and to make	Analyze	Term and Final
	proper interpretations of the results.		Examination

DSA307–Generalized Linear Model

Course Rationale:

The course will help the students to build statistical models where the response data may follow any particular probability distribution. The emphasis will be given in finding the link which will help the students derive the models. This course will also guide the students on the procedure of comparing the models and finding out the best fitted one.

Course Content:

Introduction to the Concepts of Modeling; Model Fitting, Exponential Family and Generalized Linear Models (Bernoulli, Binomial, Poisson, Exponential, Gamma, Normal, etc.); Properties of distributions in the exponential family, Random, Systematic and Link Functions, Poisson Regression; Maximum Likelihood Identity Link, Logit Link, Log Link, Parameter Estimation; Score Function and Information Matrix, Estimation, Residuals analysis for GLM, Quasi Likelihood Estimating Equations, Generalized Estimating Equations for Repeated Measures Data, Comparison between Likelihood and Quasi Likelihood Methods, Mixed Effect Models.

Mapping Course	Learning Outcom	nes (CLOs) with the PLOs
----------------	-----------------	--------------------------

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2					\checkmark				
CLO 3				\checkmark					

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain /Level	Assessment Tool
CLO1	Understanding the probability distribution of the	understand	Term and Final
	population from where the samples are derived		Examination
CLO2	Find the link to derive statistical model	Apply	Assignment, Term
			Examination
CLO3	Compare the models to find the best one and get	Analyze	Assignment, Term
	the inference from the model		and Final
			Examination

DSA401–Data Mining

Course Rationale:

Data Mining studies algorithms and computational paradigms that allow computers to find patterns and regularities in databases. It is currently regarded as the key element of a more general process called Knowledge Discovery which process includes data selection, cleaning, coding, using different statistical and machine learning techniques, and visualization of the generated structures. The course will cover all these issues and will illustrate the whole process by examples.

Course Content:

Introduction to data mining; Measurements and distances; Systematic overview of data mining algorithms – decision trees and MLP, association rules and text retrieval; Model and Patterns – prediction models, probability models and graphical models, structured data and Markov models, pattern structures; Content-based Information Retrieval – precision and recall, text retrieval with term frequency and inverse document frequency, text retrieval with latent semantic indexing and probabilistic retrieval, content-based image retrieval.

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2			\checkmark						
CLO 3			\checkmark						
CLO 4					\checkmark				

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Leve	Assessment Tool
		1	
CLO 1	Conceptualize basic applications, concepts, and	Understand	Term and Final
	techniques of data mining		Examination
CLO 2	Identify appropriate data mining algorithms to	Analyze	Assignment, Term, and
	solve real world problems		Final Examination
CLO 3	Compare and evaluate different data mining	Analyze	Term and Final
	techniques like classification, prediction,		Examination
	clustering and association rule mining		
CLO 4	Apply knowledge of data mining in developing	Apply	Term and Final
	research ideas		Examination

DSA403– Machine Learning

Course Rationale:

Machine learning is the field of AI that uses data to learn and make predictions or decisions without being explicitly programmed. This course covers basic machine learning techniques and applications.

Course content:

Definition, scope and challenges of machine learning; Basic concepts and terminologies; Supervised learning methods; Unsupervised learning methods; Evaluation and validation techniques for supervised and unsupervised methods such as ROC curve, MSE;Hold-Out Method, K-Fold Cross Validation; Leave one out cross-validation (LOOCV); Reinforcement learning methods and their evaluation and validation techniques; Bias-variance tradeoff, regularization, model selection; applications of machine learning.

Mapping of cours	e learning	g outcom	es (CLOs) with the	e PLOs	

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1				\checkmark					
CLO2				\checkmark					
CLO3				\checkmark					
CLO4									
CLO5			\checkmark						

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CLOs	CLO description	Domain/Level	Assessment tool
CLO1	Use supervised learning algorithms in ML	Apply	Assignments, Term and
			final examination
CLO2	Use unsupervised learning algorithms in ML	Apply	Assignments, Term and
			final examination
CLO3	Use reinforcement learning algorithms in ML	Apply	Assignments, Term and
			final examination

CLO4	Evaluate the performances of above models	Evaluate	Assignments, Term and final examination
CLO5	Validate the outcomes from above models	Evaluate	Assignments, Term and final examination

DSA405-Big Data & Cloud Computing

Course Rationale:

The aim of this course is to provide students with the foundation knowledge and understanding of Big Data and distributed computing systems and applications especially in context of Cloud. In other words, this course will equip students with essential knowledge that is needed for building next-generation applications that are scalable and efficient and can process Big Data.

Course content:

The definition, characteristics, sources and challenges of big data; Big data management systems; The tools and software for analyzing big data; Big data ethics and security; Latest trend and research on big data; The definition, characteristics and benefits of cloud computing; Various types of cloud computing applications; Cloud computing service models; Tools and technologies used for the development and deployment of cloud computing; Security, management and best practices.IoT, Hybrid optimization models for real-world applications of IoTand big data analytics, Architectures and models for IoT networks using ML techniques;

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1		\checkmark			\checkmark				
CLO2						\checkmark			
CLO3						\checkmark			
CLO4								\checkmark	

Mapping of course learning outcomes (CLOs) with the PLOs

Mapping of the course learning outcomes (CLOs) with the teaching-learning & a	ssessment
strategy	

CLOs	CLO description	Domain/Level	Assessment tool
CLO1	Store and manage big data from different	Create	Project Work
	field of inquiries		
CLO2	Analyze big data using modern computing	Analyze	Assignments, Term and final
	tools and services		examination
CLO3	Use cloud computing services effectively	Apply	Assignments, Term and final
			examination
CLO4	Maintain the ethics and security of data,	Apply	Project Work
	s/he is working on		

DSA407– Data Security & Privacy

Course Rationale:

Today's technology-based world is floating on data. Data is available from numerous sources. While a well maintained and safe study on these data can be beneficial for the mass, use of these data in a wrong intention can be very dangerous, and even life threatening. Therefore, maintaining the privacy of the data owners and keeping their data in a secure and a safe place is vital. This course discusses about the security and privacy of data.

Course Content:

Data privacy laws; Legal requirements; Ethical foundations; Common security issues; Bias in algorithmic design; Balance of interests among individuals, government, and enterprises;Complicity; Bangladesh Perspectives;

Emerging technologies that may affect security and privacy concerns, issues related to development enterprise-level or national-level data security programs.

Mapping of course learning outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	\checkmark								
CLO2									
CLO3									

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy $% \mathcal{A} = \mathcal{A} = \mathcal{A}$

CLOs	CLO description	Domain/Level	Assessment tool		
CLO1	Understand the importance of security in the field	Understand	Assignments, Term and		
	of data sciences		final examination		
CLO2	Identify any security flaws in a data policy	Evaluate	Assignments, Term and		
			final examination,		
			Project Work		
CLO3	Work on improving current security and privacy	Create	Assignments, Term and		
	measures in an educated & logical approach		final examination,		
			Project Work		

DSA499– Data Science Project

Course Rationale:

The primary purpose of this research project is to apply the knowledge that the student gained during the coursework to a practical problem and to gain firsthand experience in doing research. The experience gained in the research project will help the students in securing positions in industries as researchers, analysts, and data scientists. Furthermore, this project also can help the students to get admissions for higher studies, such as M.Sc./PhD into national and international universities.

Course Content:

The project topic will be finalized by the supervisor. The project may be done individually or in a group of three to four students.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1		\checkmark	\checkmark			\checkmark			
CLO 2	\checkmark								
CLO 3								\checkmark	
CLO 4								\checkmark	\checkmark

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping	Course	Learning	Outcomes	(CLOs)	with	the	Teaching-Learning	&	Assessment
Strategy									

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO1	Explain and analyze statistical and data-oriented	Analyze	
	problems independently and confidently.		
CLO2	Develop critical thinking through observation and	Evaluate	
	knowledge.		
CLO3	Develop communication skills in the scientific	Examine	Project paper and
	community		presentation
CLO4	Apply their knowledge in different fields to	Apply	
	contribute to society through research activities.		

STA430– Stochastic Processes

Course Rational:

Stochastic processes are ways of quantifying the dynamic relationships of sequences of random

events. Stochastic models play an important role in elucidating many areas of science. The course aims to introduce the fundamentals of stochastic models tools, methods andtheir applications.

Course Content:

A brief review of probability theory; Discrete Markov chains: Chapman-Kolmogorov equations, persistence and transience, generating functions, stationary distributions, reducibility, limit theorems, ergodicity; Continuous Markov processes: Poisson process, birth-death and branching processes, embedding of a discrete-time Markov chain in a continuous-time Markov processes; Stationary processes (autocorrelation function, spectral representation); Renewal processes, queues; diffusion processes, Wiener processes (Brownian motion) - Applications to finance (option pricing and the Black-Scholes theorem.)

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2			\checkmark						
CLO 3				\checkmark					
CLO 4					\checkmark				

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping	Course	Learning	Outcomes	(CLOs)	with	the	Teaching-Learning	&	Assessment
Strategy									

CLOs	CLO Description	Domain/Lev	Assessment Tool
		el	· /
CLO 1	Understand concepts and methods of	Understand	Term and Final
	stochastic modeling		Examination
CLO 2	Compute probabilities of transition between	Analyze	Assignment, Term, and
	states in Markov chains.		Final Examination
CLO 3	Identify classes of states in Markov chains and	Analyze	Term and Final
	characterize the classes.		Examination
CLO 4	Solve problems in time-continuous processes	Analyze	Term and Final
	and determine corresponding limit distributions.		Examination

STA432–Bayesian Statistics

Course Rationale:

The aim of this course is to introduce students to the Bayesian statistical modeling and inference and to the related computational strategies and algorithms. Thus, this course is important to the data analyst where Bayesian modeling and inference is needed.

Course Content:

Introduction, Comparison of frequentist and Bayesian statistics, One-parameter models, Simulation; Prior specification: Conjugate prior, Jeffereys prior; Empirical Bayes, brute-force posterior simulation; Basics of decision theory, multi-parameter models; Multivariate models; Linear regression, asymptotic approximation to posterior distributions; Hierarchical model; Gibbs sampling, Metropolis-Hastings algorithm; Theory of MCMC, Convergence diagnostics for MCMC; GLMM; latent variable model for ordinal data, Bayes factor; DIC, SSVS.

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2				\checkmark					

CLO 3		\checkmark			
CLO 4					

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO 1	have knowledge of basic concepts, philosophy	Understand	Term and Final
	and views in Bayesian statistics		Examination
CLO 2	derive posterior distributions in simple cases	Analyze	Assignment, Term
	and use predictive distributions		Examination
CLO 3	identify and formulate Bayesian statistical	Analyze	Term and Final
	models for analysis and prediction		Examination
CLO 4	be able to use basic principles for decisions	Analyze	Term and Final
	under uncertainty		Examination

DSA434–Time Series Analysis

Course Rationale:

This course aims to introduce students to a comprehensive set of tools and techniques for analyzing various forms of univariate and multivariate time series. After completing this course, students can apply key concepts of estimation and forecasting in a time series context.

Course Content:

Introduction to time series, Types of variation, The auto-covariance of a stationary time series; Box-Jenkins Model, the concept of a filter, root characteristic equation of time series; Estimation of the mean and the autocovariance; Prediction for stationary time series; The Wold's decomposition and Partial correlation;Partial autocorrelation, AR process, MA process, ARMA processes, Calculation of the ACVF, Prediction of an ARMA Process, co-integrated time series; ARIMA time series; Concept and properties of discrete random walks and random walks with normally distributed increments, both with and without drift; Dealing with multivariate time seriesdata – VAR model.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2				\checkmark					
CLO 3				\checkmark					
CLO 4			\checkmark						

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO 1	Define time series components.	Understand	Term and Final
			Examination
CLO 2	Construct a stationary time series model.	Analyze	Assignment, Term
			Examination
CLO 3	Construct nonlinear stochastic models.	Analyze	Term and Final
			Examination
CLO 4	Evaluate stationary in time series.	Analyze	Term and Final
			Examination

DSA436–Experimental Design Course Rationale: Experimental designs play an important role in process development and process troubleshooting in industry, business, agriculture and many others areas. Thus the course objective is to learn how to plan, design and conduct experiments efficiently and effectively, and analyze the resulting data to obtain valid conclusions.

Course Content:

Overview and Basic Principles; Simple Designs and Analysis of Variance; Block Designs, Latin Squares and Related Designs; Full Factorial Designs; 2-level Full Factorial and Fractional Factorial Designs; Response surface methods and designs; Designs with Random Factors; Nested Designs and Split-plot Designs. example of real life application of these methods.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2	\checkmark								
CLO 3				\checkmark					
CLO 4					\checkmark				

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course	e Learning	Outcomes	(CLOs)	with	the	Teaching-Learning	& Assessment
Strategy							

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO 1	Understand the experimental methods and major	Understand	Term and Final
	experimental designs, and think critically about		Examination
	their proper applications.		
CLO 2	Formulate hypotheses that can be tested using	Understand	Term and Final
	experiments.		Examination
CLO 3	Apply different types of experimental design.	Apply	Term and Final
			Examination
CLO 4	Explain the output of analysis of variance	Analyze	Term and Final
	(ANOVA) from different design.		Examination

STA438– Biostatistics

Course rational:

This course provides an introduction to biostatistics and epidemiology to the student with minimal training in public health, the biomedical sciences, and statistics. It is important for the student to be able to identify causal factors and modes of transmission, with the assistance of statistical tools and biomedical information, and reflect the primary aim of epidemiology.

Course Content:

Scope of Biostatistics, Survivor Function, Hazard Function, their Inter Relationships; Censoring and Truncation; Type I, Type II and Random Censoring. Non-Parametric Methods of Estimating Survivor Functions, Inference Procedures for Exponential Distributions: One Parameter Exponential Distribution.Exponential Regression Model; Types of Epidemiologic Studies.Measures of Association between Disease and Risk Factor: Relative Risk, Attributable Risk, Odds Ratio. Screening, Properties of Screening Test: Sensitivity, Specificity, Negative and Positive Predictive Values. Assignment and/or a mini project to be completed on the basis of the above topics by using software.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1		\checkmark							
CLO 2			\checkmark						
CLO 3				\checkmark					
CLO 4					\checkmark				
CLO 5							\checkmark		

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping	Course	Learning	Outcomes	(CLOs)	with	the	Teaching-Learning	&	Assessment
Strategy									

CLOs	CLO Description	Domain/Level	Assessment
			Tool
CLO1	Apply the theoretical foundations of probability	Analyze	Term and Final
	theory and distribution theory		Examination
CLO2	Derive the theoretical mathematics of statistical	Analyze	Term and Final
	inferences		Examination
CLO3	Perform survival model fitting and diagnosis	Apply	Term and Final
			Examination
CLO4	Interpret the results of statistical analysis to	Apply	Term and Final
	public health audience		Examination
CLO5	Write scientific reports based on statistical	Analyze	Term and Final
	analysis in public health.		Examination

STA440– Information Systems

Course rational:

This course introduces few information systems (Such as MIS and GIS) with basic levels of analysis.

Course content:

Introduction GIS; Applications and benefits; Methods for collecting, storing and managing geospatial data in different formats and systems; Analysis and visualization of such data; Use of scripting, automation and web databases to enhance GIS capabilities; Use of popular GIS software applications such ArcGIS; Introduction to MIS; Components and roles; Designing, implementing and evaluating an MIS; Different types of information systems used in businesses; Security and ethical issues; Introduction to Mobile Positioning Data (MPD).

Mapping of course learning outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1		\checkmark							
CLO2			\checkmark						
CLO3					\checkmark				
CLO4			\checkmark						

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CLOs	CLO description	Domain/Level	Assessment tool		
CLO1	Collect & manage geospatial data	Apply	Project work		
CLO2	Analyze geo-spatial data	Analyze	Assignments, Term and		

			final examination
CLO3	Designing different business management	Apply	Project Work
	systems		
CLO4	Analyze data from different business	Analyze	Assignments, Term and
	management systems		final examination

ECO465– Basic Econometrics

Course Rationale:

The objective of this course is to prepare students for basic empirical work in economic data. Thus, the course is important for students who want to make a career as data analyst in applied economics and related fields.

Course Content:

This course focuses on OLS estimation, including two-variable regression, functional form, multiple regression, multicollinearity, heteroskedasticity and autocorrelation, specification errors, dummy variables, lagged variables, identification, and systems estimation.

Mapping Course Learning Outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2									
CLO 3	\checkmark								
CLO 4					\checkmark				
CLO 5						\checkmark			

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain /Level	Assessment Tool
CLO 1	Explain core concepts and methods in econometrics	Understand	Term and Final
	where the classical linear regression model gets more		Examination
	attention.		
CLO 2	Basic knowledge of how to detect and treat violations	Understand	Term and Final
	of the OLS method.		Examination
CLO 3	Understand about nonlinear econometric models,	Understand	Term and Final
	Simultaneous equation models, Fixed Effects, Random		Examination
	Effects, and Dynamic Models.		
CLO 4	Apply appropriate econometric methods in various	Apply	Term and Final
	econometric data.		Examination
CLO 5	Use statistical software to implement the various	Analyze	Term and Final
	modes taught employing secondary data and		Examination
	demonstrate ability to analyze and assess empirical		
	results.		

CS410– Deep Learning

Course Rationale:

Deep learning methods use artificial neural networks to mimic the learning process of the human brain. This course covers advanced concepts, methods and applications of deep learning.

Course content:

The definition, scope and challenges of deep learning; Basic concepts and terminologies; Neural network basics; Various kinds of basic and advanced neural networks; Methods for evaluating and improving the performance and efficiency of neural networks; Various tools and software

used for facilitating the development and deployment of neural networks; Latest development in the field of deep learning.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	\checkmark								
CLO2					\checkmark	\checkmark			
CLO3									

Mapping of course learning outcomes (CLOs) with the PLOs

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CLOs	CLO description	Domain/Level	Assessment tool
CLO1	Understand the working principles of basic	Understand	Assignments, Term and final
	and advanced neural networks		examination
CLO2	Use computing tools to develop neural	Create	Assignments, Term and final
	network-based learning models		examination, Project Work
CLO3	Evaluate performances of neural-network-	Evaluate	Assignments, Term and final
	based models		examination

CS412- Data Visualization

Course Rationale:

This course provides different techniques and ways of presenting various types of data and outputs graphically with the aim to explore the data characteristics, test theoretical assumptions for analysis, and create interactive maps and dashboards.

Course content:

The value and purpose of data visualization; The principles and techniques of designing and evaluating a visualization; Various basic to advanced visualization techniques such as basic charts and graphs, graphs for- high-dimensional data, multivariate data, temporal and spatial data, data from analogue and digital devices; Network and relational graphs; Contour plot, surface plot, heatmap; Interactive dashboards; Use of tools and software for data visualization such as- R, Python, Tableau, PowerBI, or Jupyter; etc.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	\checkmark	\checkmark							
CLO2						\checkmark			
CLO3									

Mapping of course learning outcomes (CLOs) with the PLOs

Mapping of the course learning outcomes (CLOs) with the teaching-learning &assessmentstrategy

CLOs	CLO description	Domain/Level	Assessment tool
CLO1	Explore data by means of graphical methods	Evaluate	Assignments, Term
			and final examination
CLO2	Use modern computing tools to visualize data and	Apply	Assignments, Term
	analyses		and final examination
CLO3	Display the outcomes in such a way that makes it	Evaluate	Assignments, Term
	easy for the reader to understand and creates correct		and final examination
	intuition in the reader's mind on the study outcome		

CS414– Cryptography and Blockchain

Course Rationale:

It is important to have knowledge and skills on cryptography, encryption technologies and blockchain technologies to develop, maintain and use a safe and secure data transaction and storage system.

Course Content:

Zero knowledge, Concurrency and protocol security, cryptographic game theory, public and private keys, digital signature, basic proof techniques, multi-party computation; Crypto-mining, hashing, proof of work, decentralized systems, consensus protocols, transaction integrity.

Manning of	agunas laguning			with the	DI Oa
mapping of	course learning	outcomes ((LUS)	with the	PLUS

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	\checkmark								
CLO2					\checkmark				
CLO3		\checkmark							

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CLOs	CLO description	Domain/Level	Assessment tool		
CLO1	Understand cryptography and encryption	Understand	Assignments, Term and		
	techniques		final examination		
CLO2	Apply cryptographic knowledge in digital	Apply	Assignments, Term and		
	data transaction to create safe and secure		final examination, Projec		
	network		Work		
CLO3	Maintain a blockchain based system	Apply	Assignments, Term and		
			final examination, Project		
			Work		

CS416– Bioinformatics

Course rational:

This course aimed at statistical analysis of biological data, especially of molecular biology. This gives a foundation in both biological and computational aspects of this field as well as the ability to apply appropriate statistical methods to these data and interpret the results.

Course content:

The definition, scope and challenges of bioinformatics; The types and sources of biological data, such as DNA, RNA, proteins, genomes etc.; Basic concepts and terminology of molecular biology such as genes, transcription, translation, mutations, etc.; Data visualization; The methods and algorithms for analyzing biological sequences; The methods and algorithms for analyzing genomic and transcriptomic data.; The methods and algorithms for analyzing proteomic and metabolomic data; Use of databases and computer tools for such data; Application of machine learning techniques in bioinformatics.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1									
CLO2									
CLO3						\checkmark			
CLO4		\checkmark							

Mapping of course learning outcomes (CLOs) with the PLOs

501 000 87					
CLOs	CLO description	Domain/Level	Assessment tool		
CLO1	Analyze transcriptomic data using	Analyze	Assignments, Term and final		
	modern computing tools		examination		
CLO2	Analyze proteomic data using modern	Analyze	Assignments, Term and final		
	computing tools		examination		
CLO3	Analyze genome sequence data using	Analyze	Assignments, Term and final		
	modern computing tools		examination, Project Work		
CLO4	Visualize biological data	Apply	Assignments, Term and final		
			examination		

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CS418– Machine Learning for Health Sciences

Course Rationale:

This course provides applications of statistics, big data analytics and machine learning methods in the field of health and medicine.

Course Content:

An introduction to the application of machine learning methods to problems in health data; Exploratory data analysis, summarizations and visualizations for public health and health service system data; Risk stratification, disease progression modeling. Drug discovery, precision medicine; Disease discovery; Developing relations between diseases, symptoms, diagnosis and recovery; Prediction and forecasting based on public health data; Strategies and challenges in machine learning in health sciences.

Mapping of course learning outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	\checkmark								
CLO2									
CLO3									

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CLOs	CLO description	Domain/Level	Assessment tool		
CLO1	Understand the opportunities of data	Understand	Assignments, Term and final		
	analytics in health sciences		examination		
CLO2	Analyze health related data	Analyze	Assignments, Term and final		
			examination		
CLO3	Model disease and drug progression	Apply	Assignments, Term and final		
			examination, Project Work		

CS420– Machine Learning for Cyber Security

Rationale of the Course:

The increasing complexity and frequency of cyber threats and attacks require innovative solutions to safeguard digital systems and data. This course aims to provide students with a strong foundation of machine learning applications in the field of cyber security. By understanding the underlying principles of machine learning and its potential to analyze large datasets, students will be equipped to develop intelligent systems capable of identifying and mitigating cyber security risks.

Course Content:

Machine learning and cyber security, exploring cyber threats, attack vectors, and the value of data-driven security strategies;Dimensionality reduction tailored to cyber security data;Data preprocessing techniques for cyber security; Intrusion detection and anomaly detection, anomaly

detection using machine learning algorithms; Malware detection and analysis, behavioral analysis, classification methods, and case studies on detecting evolving malware; Threat intelligence and predictive analytics, applying machine learning to threat intelligence, predictive models for anticipating security incidents, and strategies for integrating threat intelligence into security operations; Security analytics and visualization, interactive dashboard creation, and showcasing real-world security analytics applications; Ethical considerations associated with machine learning in cyber security, data protection in security analytics.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1		\checkmark							
CLO2									
CLO3					\checkmark				
CLO4									

Mapping of course learning outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO description	Domain/Level	Assessment
			tool
CLO1	Comprehend the role of machine learning in the	Lecture, Class	Formative:
	context of cyber security, recognize various types	Discussion,	Homework,
	of cyber threats, and articulate the significance of	Discussion Outside	Workshop,
	data-driven security strategies.	Class with Instructor	Summative:
			Examination
CLO2	Apply the basics of supervised, unsupervised, and	Lecture, Class	Formative:
	reinforcement learning to cyber security scenarios,	Discussion,	Homework,
	implement feature engineering and dimensionality	Discussion Outside	Workshop,
	reduction techniques tailored to security data, and	Class with Instructor	Pitching,
	employ appropriate evaluation metrics to assess		Presentation
	model performance.		Summative:
			Examination
CLO3	Demonstrate proficiency in data collection,	Lecture, Class	Formative:
	cleaning, and transformation techniques specific to	Discussion,	Homework,
	cyber security, address challenges posed by	Discussion Outside	Pitching
	imbalanced datasets and missing data, and perform	Class with Instructor	Summative:
	exploratory data analysis to gain insights into		Examination
	security-related data.		
CLO4	Develop intrusion detection systems utilizing	Lecture, Class	Formative:
	machine learning components, construct anomaly	Discussion,	Homework,
	detection models for network traffic analysis,	Discussion Outside	Workshop,
	identify malware using machine learning	Class with Instructor	Presentation
	techniques, and utilize threat intelligence and		Summative:
	predictive analytics to anticipate cyber security		Examination
	incidents, integrating these insights into security		
	operations effectively.		

BUS420– Business Intelligence

Course Rationale:

This is an applied course focusing on the applications of statistics, big data analytics and machine learning methods to understand the business environment, consumer and market behavior.

Course Content:

Collecting, integrating, analyzing and presenting business data; Data warehousing; Visualization and dashboards of business data; Content Management; Knowledge Management; Social media, big data and data mining; Strategic Approach to BI; Applications of regression, time-series, test of hypothesis, decision theory using software and machine learning tools in business decision making and forecasting.

Mapping of course learning outcomes (CLOs) with the PLOs

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	\checkmark								
CLO2									
CLO3									

Mapping of the course learning outcomes (CLOs) with the teaching-learning & assessment strategy

CLOs	CLO description	Domain/Level	Assessment tool
CLO1	Explore the dynamics of	Understand	Assignments, Term and final
	business data		examination
CLO2	Analyze & model business and	Analyze	Assignments, Term and final
	consumer data		examination, Project Work
CLO3	Make comparable business	Analyze	Assignments, Term and final
	decisions		examination

FIN7430– Foundation of Financial Technology

Course Rationale:

This is an innovative course designed to develop skills among students for a potential career in the fin-tech industry, combining financial theory, big data management, analytics, and data visualization with a view to supporting large and small companies, which are developing solutions through the use of technology.

Course Content:

Fin-Tech opportunities to improve the financial system, Recent developments of Fin-tech in Bangladesh and across the globe, Current Major areas of Fin-Tech (Financial institutions, Capital market, e-retailers etc.), Potential issues with Fin-Tech and future prospects, Fin-tech, Crypto and AI, Changing Structure of the Financial Ecosystem, Financial Innovation, and Inclusion, of Blockchain and Crypto-currency (digital currency) Technologies, Continuing Evaluation of Crypto-assets / digital-assets technology, Fin-tech in a Global Setting, Fin-tech and Government Regulation

			-						
CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO
CLO 1	\checkmark								
CLO 2	\checkmark								
CLO 3									
CLO 4									

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning	Outcomes (CLOs) with the	Teaching-Learning &	& Assessment
Strategy			

CLOs	CLO Description	Domain	Assessment Tool
		/Level	
CLO 1	Demonstrate an understanding of recent developments	Understand	Term and Final
	of Fin-tech.		Examination
CLO 2	Demonstrate a solid understanding of the wider range Fintech services in the marketplace, new services, and products, often mobile and disruptive, blockchain, smart contract, crypto-currency, crypto-assets, and AI, cutting-	Understand	Assignment, Term Examination
	edge developments in banking, financial markets, and entrepreneurial fields.		
CLO 3	Apply and analyze social and distributional issues around new Fin-tech and the related ecosystem through technological innovation and market penetration.	Analyze	Term and Final Examination
CLO 4	Able to critically analyze and apply Ethical issues of Fin-tech, relevance to new Fin-tech in a global	Analyze	Term and Final Examination

perspective, the entrepreneurial approach of innovation,	
and existing and emerging rules and regulations of	
financial markets in the context of local, regional, and	
global.	

FIN7431– Systems Analysis and Design

Course Rationale:

A practical area of the information systems discipline called systems analysis and design necessitates mastery of both established concepts and principles and cutting-edge tools and methodologies.

Course Content:

This course familiarizes the students with the role that a system analyst can play in modern organizations. Knowledge about project management and different phases of system development, from basic information gathering to full-scale implementation and maintenance, is necessary for the implementation of new financial products and services in organizations as well as for introducing changes to enable such organizations to survive in the new global competitive business world.

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO 1	\checkmark								
CLO 2	\checkmark								
CLO 3				\checkmark					
CLO 4									

Mapping Course Learning Outcomes (CLOs) with the PLOs

Mapping Course Learning Outcomes (CLOs) with the Teaching-Learning & Assessment Strategy

CLOs	CLO Description	Domain/Level	Assessment Tool
CLO 1	Understand current information systems and	Understand	Term and Final
	user's requirements in a systematic approach.		Examination
CLO 2	Understand user requirements, suggest and	Understand	Assignment, Term
	design new information systems that solve the		Examination
	current problems and meet user's requirements.		
CLO 3	Apply proper techniques and methodologies	Analyze	Term and Final
	throughout the development process.		Examination
CLO 4	Plan and undertake a major individual project	Analyze	Term and Final
	and prepare and deliver coherent and structured		Examination
	verbal and written technical reports.		

N.B.: The contents of the GED courses are not given here as these courses are taught in different departments of East West University.

For details please contact

Admission Office, East West University Plot A/2, Johurul Islam City, Aftabnagar, Dhaka-1212 or Call: 09666775577, 55046678 e-mail: <u>admissions@ewubd.edu</u>; Website: http://www.ewubd.edu